Charmonium Production in Pb+Pb Collisions at $\sqrt{s}_{NN} = 2.76 \text{ TeV}$

Abdulla Abdulsalam, Vineet Kumar, and P. Shukla Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085, INDIA and (For CMS Collaboration)

Introduction

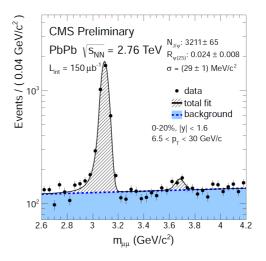
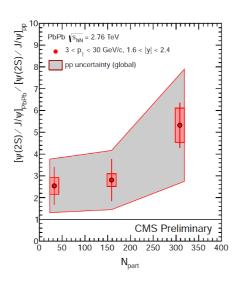
In high-energy heavy-ion collisions, one of the most striking characteristics is the suppression of quarkonium states. The suppression is predicted to occur above a critical temperature of the medium, and sequentially, in the order of the $Q\overline{Q}$ binding energy [1]. The $\psi(2S)$ meson yield in PbPb collisions is of particular interest when compared to the J/ψ meson. The sequential melting should manifest itself in nuclear modification factors (R_{AA}) for the $\psi(2S)$ that are smaller, or at most equal, to those measured for the J/ψ . In the analysis, the main result is presented in the form of a double ratio $(\mathrm{N}\psi(2\mathrm{S})/\mathrm{NJ}/\psi)_{PbPb}/(\mathrm{N}\psi(2\mathrm{S})/\mathrm{NJ}/\psi)_{pp}$ [2]. The double ratio can also be written as the ratio of $\psi(2S)$ and J/ψ nuclear modification factors: $(N\psi(2S)/NJ/\psi)_{PbPb}/(N\psi(2S)/NJ/\psi)_{pp}$ $= R(PbPb)/R(pp) = R_{AA}(\psi(2S))/R_{AA}(J/\psi).$

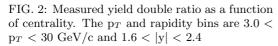
Data Selection

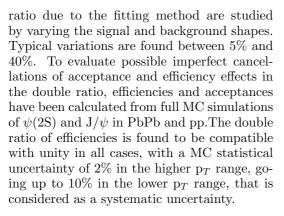
The analysis is based on a data sample recorded by the CMS detector in pp and PbPb collisions at $\sqrt{s_{NN}}=2.76$ TeV with higher luminosity about a factor of 20 compared to 2010 PbPb run. Hadronic PbPb collisions were selected using information from the two Beam Scintillator Counters and Forward Hadronic calorimeters (HF). After filtering, a sample of 1 billion minimum bias (MB) events were collected. Assuming an inelastic PbPb cross section of $\sigma_{PbPb}=7.65$ barn, this sample corresponds to an integrated luminosity of $L_{int}=150~\mu b^{-1}$. The recorded pp luminosity in CMS was $225~nb^{-1}$.

Signal extraction and analysis

The analysis is performed in two $[p_T,|y|]$ kinematical ranges: 1) Lower- p_T J/ ψ and


FIG. 1: Invariant mass spectrum of $\mu^+\mu^-$ pairs


 $\psi(2\mathrm{S})$, down to 3 GeV/c, can only be reached for 1.6 < $|\mathrm{y}|$ < 2.4. 2) At mid-rapidity, $|\mathrm{y}|$ < 1.6, only J/ ψ and $\psi(2\mathrm{S})$ of $\mathrm{p}_T > 6.5$ GeV/c are reconstructed, as imposed by the singlemuon acceptance. The centrality classes used in this analysis are 40-100% 20-40% and 0-20%, ordered from the lowest to the highest HF energy deposit.

The invariant mass (m) spectrum of $\mu^+\mu^-$ pairs with $6.5 < p_T < 30$ GeV/c, in the region $2.6 \le m < 4.2$ GeV/c, is shown in Figure 1. The black curve is an unbinned maximum likelihood fit with sum of a Crystal Ball (CB) and a Guassian function with common mean m_0 and an exponential for the background. The CB function $f_{CB}(m)$ combines a Gaussian core and a power-law tail with an exponent n to account for energy loss due to final-state photon radiation.

The systematic uncertainties on the single

Results

The results of the double ratio measurement are shown in Figure 2 and 3 as a function of centrality, for the lower p_T and higher p_T selections. Since the uncertainties on R(pp) are common to all centralities, they are shown as a grey area, adding the statistical and systematic uncertainties in quadrature. The error bars and boxes stand for the statistical and systematic uncertainties due to R(PbPb). For $p_T > 6.5 \text{ GeV/c}$ and |y| < 1.6 the double ratio is always less

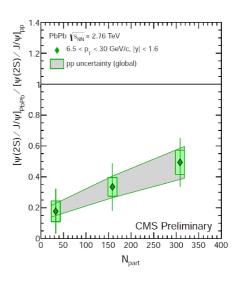


FIG. 3: Measured yield double ratio as a function of centrality. The p_T and rapidity bins are $6.5 < p_T < 30 \text{ GeV/c}$ and |y| < 1.6.

than unity, meaning that high-p $_T$ $\psi(2S)$ are more suppressed than J/ψ . Within uncertainties, no centrality dependence is observed. However, going to lower p $_T$ (3 < p $_T$ < 30 GeV/c) in the forward rapidity range, the data show an increase of the double ratio with centrality, though with large uncertainties. In the most central collisions the double ratio is $5.32\pm1.03(\text{stat.})\pm0.79(\text{syst.})\pm2.58(\text{pp})$ which means that more $\psi(2S)$ are produced compared to J/ψ than in pp collisions, again with large uncertainties.

In summary, at lower p_T and forward rapidity, the data suggests an enhancement of the $\psi(2S)/J/\psi$ ratio and in higher p_T and midrapidity $\psi(2S)$ is more suppressed than J/ψ .

References

- [1] CMS Collaboration, "Suppression of non-prompt J/ ψ , prompt J/ ψ , and in PbPb collisions at $\sqrt{s}_{NN}=2.76$ TeV", JHEP **05** (2012) 063.
- [2] CMS Collaboration, "Measurement of the $\psi(2{\rm S})$ meson in PbPb collisions at $\sqrt{s}_{NN}=2.76$ TeV", CMS PAS HIN-12-007.