Introduction

Ternary fission is a rare radioactive decay process in which a parent nucleus breaks into three fragments and it was observed for the first time by Alvarez [1], (as reported by Farwell et al.). Usually in a ternary fission process, one of the fragments is very light compared to the main fission fragments. The ternary particle or light charged particle formed in the ternary fission process can be emitted in two different configurations; equatorial or collinear configuration. An equatorial configuration is one in which the ternary particle is emitted in a direction perpendicular to the main fission fragments whereas in the case of collinear configuration, the light charged particle is emitted along the direction of the main fission fragments.

Unified ternary fission model

The light charged particle accompanied ternary fission is energetically possible only if Q value of the reaction is positive.

$$Q = M - \sum_{m_i} m_i > 0$$

Here M is the mass excess of the parent and m_i is the mass excess of the fragments. The interacting potential barrier V consists of Coulomb potential V_{Coul} and nuclear proximity potential V_{prox} of Blocki et al., [2] and is given as,

$$V = \sum_{i=1}^{3} \sum_{j=0}^{3} (V_{Coul} + V_{prox})$$

Using one-dimensional WKB approximation, the barrier penetrability P is given as,

$$P = \exp \left\{ -\frac{2}{h} \sqrt{2\mu(V - Q)}dz \right\}$$

The turning points $z_1=0$ represent touching configuration and z_2 is determined from the equation $V(z_2)=Q$, where Q is the decay energy.

The mass parameter is replaced by reduced mass μ and is given as,

$$\mu = m - \frac{A_i A_j A_k}{A_i A_j + A_j A_k + A_k A_i}$$

where m is the nucleon mass and A_i, A_j and A_k are the mass numbers of the three fragments. The relative yield can be calculated as the ratio between the penetration probability of a given fragmentation over the sum of penetration probabilities of all possible fragmentation as follows,

$$Y(A_i, Z_i) = \frac{P(A_i, Z_i)}{\sum P(A_i, Z_i)}$$

Results and Discussion

The ^{10}Be accompanied ternary fission of ^{252}Cf isotope has been studied in both equatorial and collinear configuration using the concept of cold reaction valley, which was introduced in relation to the structure of minima in the so called driving potential. The driving potential is defined as the difference between the interaction potential V and the decay energy Q of the reaction. In the ^{10}Be accompanied ternary fission of ^{252}Cf isotope, the driving potential for all possible fragment combinations are calculated and plotted as a function of fragment mass number A_i as shown in figure 1. Here minima is found for $A_i = ^{3}\text{He}$, ^{10}Be, ^{14}C, ^{16}C, ^{18}O, ^{20}O, ^{26}Ne, ^{28}Mg, ^{30}Mg, ^{32}Mg, ^{30}Si etc. The fragment combination $^{110}\text{Ru}^{10}\text{Be}^{132}\text{Sn}$ shows a deep minimum is due to the presence of doubly magic nucleus ^{132}Sn (N=82, Z=50) and the same fragment combination possess high Q value. Hence the fragment combination around $^{110}\text{Ru}^{10}\text{Be}^{132}\text{Sn}$ may be the most favourable fragment splitting found in the ternary fission, as it possess the presence of doubly magic nuclei and high Q value. This can be clarified only with the calculation of barrier penetrability and the relative yield obtained for
every fragmentation found in the 10Be accompanied ternary fission of 252Cf isotope.

The driving potential is plotted as a function of fragment mass number A_1 for the 10Be accompanied ternary fission of 252Cf.

The barrier penetrability is calculated for all possible fragmentations found in the cold reaction valley and hence the relative yield is calculated. Figure 2 represents the plot of relative yield versus fragment mass numbers A_1 and A_2. From the figure it is clear that the highest relative yield is found for the fragment combination 10Ru+10Be+122Sn, which is the same fragment combination with a minimum driving potential, high Q value and possess the presence of doubly magic nucleus 130Sn (N=82, Z=50) in the cold reaction valley plot.

The next highest relative yield is obtained for the splitting 112Ru+10Be+120Sn which includes the presence of doubly magic nuclei 130Sn (N=80, Z=50). The next favoured fragment combinations found in this ternary fission process is for 10Mo+10Be+124Te and 10Ru+10Be+128Sn which includes the presence of near doubly magic nucleus 136Te (N=82, Z=52) and the proton shell closure Z=50 of 128Sn respectively.

A comparative study has been made with the relative yield obtained in the equatorial and collinear configuration of the 10Be accompanied ternary fission of 252Cf isotope with the experimental data [3]. The experimental ternary fission yields are observed for the correlated pairs of 96Sr/100Ba, 98Sr/100Ba, 100Mo/132Ba, 102Zr/142Xe, 102Zr/140Xe, 104Zr/138Xe, 106Mo/134Te, 108Mo/136Te, 110Ru/132Sn, 112Ru/130Sn. Figure 3 shows the comparison of the relative yield with the experimental data found in the ternary fission of 252Cf isotope with 10Be as light charged particle. Here the most probable fragment combinations which are observed in the experiment using Gammasphere facility and that obtained using the Unified ternary fission model are found to the same.

Fig. 1 The driving potential is plotted as a function of fragment mass number A_1 for the 10Be accompanied ternary fission of 252Cf.

Fig. 2 The relative yield is plotted as a function of fragment mass numbers A_1 and A_2 for the 10Be accompanied ternary fission of 252Cf.

Fig. 3 Comparison of relative yield with the experimental data for the 10Be accompanied ternary fission of 252Cf isotope.

References