Testing of Large Real-Size GEM Detector for CBM Experiment

1Bose Institute, Centre for Astroparticle Physics and Space Sciences, Kolkata-91, INDIA and
2Variable Energy Cyclotron Centre, Kolkata-64, INDIA

Introduction

Gas Electron Multiplier (GEM) detector has been extensively used in many experiments for its excellent performance as a tracking detector. In CBM experiment, Muon Chamber detector (MUCH) for tracking muon, will be built using GEM based detector technology [1]. In this direction several R & D has been performed with small to medium size triple GEM chambers [2]. A real-size triple GEM detector prototype, suitable for 1st detector station of MUCH detector, has been tested using high intensity proton beam of momentum 2.36 GeV/c at COSY, Germany. We get efficiency of detector > 95 % at $\Delta V_{GEM} = 371.85$ V. The variation of efficiency of the detector with rate of incoming particle is within 1%. The detector shows a gain of 3509 at $\Delta V_{gem} = 375.18$ Volt. The gain is stable with high rate of incoming particles with a small variation (~ 9%).

Experimental Setup

The schematic layout of the test setup is shown in Fig. 1. A proto-type triple GEM of trapezoidal shape is used. The active region of the detector is 708 mm along radial direction and width of the innermost and outermost rings are 100:25 mm and 381:25 mm respectively. The drift gap, transfer gap and the induction gap of the chamber are 3 mm, 1 mm, 1.5 mm respectively. The readout pads are 1° progressing size pads [3] of area 3:96 mm2 to maximum 16:6 mm2. A premixed gas mixture of Ar and CO$_2$ in mass ratio of 70:30, was used. Data are taken in self-triggered mode.

Results

In this nXYTER based self-triggered readout system, all hits above a predefined threshold are digitized and stored. Only hits produced by the beam particles are correlated with the trigger. We get clear beam spot at GEM detector as shown in Fig. 2.

The pedestal subtracted event by event ADC distribution fitted with Landau func-
tion is shown for the region where pad size is $5.46 \, mm \times 5.46 \, mm$ shown in Fig 3.

The particles pass through the two scintillators are taken as input to the detector while calculating efficiency. Efficiency reaches above 95% at $\Delta V_{GEM} = 371.85 \, V$. The variation of efficiency with ΔV_{GEM} is shown in Fig. 4.

The gain uniformity with the rate of particles is shown in 7. We observe a variation of $\sim 9%$ as the particle rate increases to $350 \, kHz$. The corresponding rate is $2.85 \, MHz/cm^2$ which is comparable to the rate, the first detector of MUCH will have to face.

References