Excited mass spectra of Σ^+_c Baryon

Zalak Shah1,∗ Kaushal Thakkar2, Ajay Kumar Rai1, and P. C. Vinodkumar3

1Department of Applied Physics, SVNIT, Surat, Gujarat-395007, INDIA.
2Department of Sciences & Humanities, GIDC Degree Engineering College, Abramra, Navsari-396406, INDIA. and
3Department of physics, Sardar Patel University, V.V. Nagar, Anand-388120, INDIA.

Introduction

Baryons are strongly interacting fermions made up of three quarks[1–3]. Recently, many of single charm baryons are discovered by different colliders like CLEO, Belle, BABAR, etc[4]. Among different phenomenological Quark models, we practise on Hypercentral Constituent Quark Model(hCQM) with conlomb plus power potential. The methodology of single charmed Baryon Σ^+_c is derived in the paper[5, 6]. Our predictions for charmed baryon masses are matched with other theoretical prediction as well as known experimental data. The obtained results are used for constructing the heavy baryon Regge trajectories in the (n_r, M^2).

The Hypercentral Model

Baryon as a bound state of three constituent quarks are describe in terms of Jacobi Coordinates($\vec{\rho}$ and $\vec{\lambda}$) as,

$$\vec{\rho} = \frac{1}{\sqrt{2}}(r_1 - r_2) \; \& \; \vec{\lambda} = \frac{1}{\sqrt{6}}(r_1 + r_2 - 2r_0)$$ (1)

For Σ^+_c (udc) system, the constituent quark mass used in our calculations are $m_1 = 0.338$, $m_2 = 0.350$, $m_3 = 1.275$ (in GeV). The Hamiltonian of three body baryonic system with different constituent quark masses for the hCQM is[5, 6],

$$H = \frac{P^2_\rho}{2m_\rho} + \frac{P^2_\lambda}{2m_\lambda} + V(\rho, \lambda) = \frac{P^2}{2m} + V(x)$$ (2)

Where, $m = \frac{2m_\rho + m_\lambda}{2m_\rho + m_\lambda}$, is reduced mass. The hyperradial Schrödinger Eqn. corresponds to

$$\frac{-1}{2m} \frac{d^2}{dx^2} + \frac{15}{4m} + \frac{\gamma(\gamma + 4)}{2mx^2} + V(x) \phi_\gamma(x) = E \phi_\gamma(x)$$ (3)

Available online at www.sympnp.org/proceedings

*Electronic address: zalak.physics@gmail.com
where $\phi_\gamma(x)$ is the hypercentral wave function and γ is the grand angular quantum number. For the present study we consider the hypercentral potential $V(x)$ as the color coulomb plus potential power with relativistic correction,

$$V(x) = V^0(x) + \left(\frac{1}{m_{\rho}} + \frac{1}{m_{\Lambda}} \right) V^{(1)}(x) + V_{\text{spin}}$$

(4)

The relativistic correlation[7] and the spin-dependent part of the three-body interaction potential of is taken as[5, 6, 8],

$$V^{(0)}(x) = \frac{\tau}{x} + \beta x^\nu \quad \& \quad V^{(1)}(x) = -C_F C_A \frac{\alpha_s^2}{4x^2}$$

$$V_{\text{spin}}(x) = -\frac{1}{4} A_0 e^{-x/s_0} \sum_{i>j} \frac{\sigma_i \sigma_j}{6m_i m_j} \lambda_\Lambda \lambda_i$$

Here, $\tau = -\frac{2}{3} \alpha_s$ related to strong coupling constant; $\frac{2}{3}$ is the color factor for baryon, β corresponds to the string tension of the confinement. $C_F = \frac{4}{3}$ and $C_A = 3$ are the Casimir charges of the fundamental and adjoint representation. The baryon spin average mass in this hypercentral model is given by $M_B = \sum_{i=1}^n m_i + BE + (V_{SD}(x))$. We take $A = A_0/\omega + \gamma + \frac{3}{2}$, where A_0 is arbitrary constant. We fix potential parameter β and hyperfine parameter τ for each choices of potential index(ν) from 0.5 to 2.0 using ground state experimental masses of $J^P = \frac{1}{2}^+$ and $J^P = \frac{3}{2}^+$ for single charmed flavor Σ_c^+ baryon.

\section*{Results and Discussions}

We have calculated the excited state masses of the Σ_c^+ baryon in Hypercentral model(hCQM). We have used the first order correction to the potential and calculated results are shown in Table(1) without(A) and with(B) first order correction. With correction results are slightly higher than that of without correction. We have plotted the graph of Mass $\rightarrow \nu$(potential index) and $M^2 \rightarrow \eta$(like Regge trajectory, see fig(1)). The details of the results will be presented in conference.

\section*{Acknowledgments}

A. K. Rai acknowledges the financial support extended by DST, India under SERB fast track scheme SR/FTP/PS-152/2012.

\section*{References}

Available online at www.sympnp.org/proceedings