Study of K-Isomers in Hafnium Nuclei

B.B. Sahu1,∗, Z. Naik2, S. K. Ghorui3, and C.R. Praharaj4

1Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar-751 024, INDIA
2School of Physics, Sambalpur University, Jyotvihar, Sambalpur-768 019, INDIA
3Dept. of Physics, IIT Ropar, Rupnagar 140001, INDIA and
4Institute of Physics, Sachivalaya Marg, Bhubaneswar-751 005, INDIA

Introduction

The Hf nuclei are known for K isomers occurring at low excitation energies. A number of strongly deformed bands have been observed in 170Hf [1], 171,172Hf [2, 3]. To understand the properties of the ground and K isomeric bands of Hafnium and other nuclei one needs a theoretical model which takes into account the residual interaction among the nucleons in a large enough valence space and gives the proper deformed single-particle states and the multi-nucleon configurations for these nuclei. To this end, we have adopted in this work the Deformed Hartree-Fock (DHF) model to get the deformed single-particle states and the deformed multi-nucleon configurations. Ground and K-isomeric intrinsic states are constructed, and for each intrinsic state (configuration), states of good angular momenta are obtained by Angular Momentum Projection.

Theoretical Framework

A deformed shape such as one described by Slater determinant of deformed orbits |ΦK> is localized in angle and, by the uncertainty principle, is not a state of good angular momentum (J). Thus |ΦK> does not have a unique J quantum number and is a superposition of various J states [4–7].

|ΦK> = ∑ J CIK |ΨIK>.

(1)

One needs to project out states of good angular momenta from the intrinsic state ΦK with the Angular Momentum Projection operator,

PKM = 2I + 1 8π2 ∫ dΩDMK∗(Ω)R(Ω).

(2)

Results and Discussion

The deformed HF orbits are calculated with a spherical core of 132Sn, the model space spans the 2s1/2, 1d3/2, 1d5/2, 0g7/2, 0h9/2 and 0h11/2 orbits for protons and the 2p1/2, 2p3/2, 1f5/2, 1f7/2, 0h9/2 and 0i13/2 orbits for neutrons respectively. We use surface delta interaction [9] as the residual interaction among the active nucleons to obtain deformed single particle orbits. The calculated results are presented in Fig. 1.

FIG. 1: Deformed HF orbits of 170Hf.

Available online at www.sympnp.org/proceedings
Conclusions

We use the deformed HF and angular momentum projection technique to obtain energy spectra of ground and excited large K-bands of 170Hf. The spectra for the various bands are obtained by angular momentum projection are presented in Fig. 2. The experimental ground band is fairly well explained in our calculation. The K=8$^-$ band coming from proton excitation across the fermi surface ($7/2^+ + 9/2^-$ occupation) is also shown. This band is satisfactorily explained in our calculation compared to experiment. The variation of energy with J of this band matches quite well with the corresponding variation of energy with J of the experimental K$^-$ band. We have also studied the K-isomers of neighboring Hf nuclei, their energy spectra and electromagnetic properties [10].

Acknowledgments

This work is supported by project No. SR/FTP/PS-106/2013, SERB, DST, Govt. of India and SB/S2/HEP-06/2013.

References

[10] B. B. Sahu et. al., To be published.