Detrended fluctuation analysis in multiparticle production

P. Mali1,∗ S. Sarkar1, S. Ghosh1, A. Mukhopadhyay1, and G. Singh2
1Department of Physics, University of North Bengal, Siliguri 734 013, India and
2Department of Computer and Information Science, SUNY at Fredonia, NY 14063, USA

The multifractal detrended fluctuation analysis (MF-DFA) introduced in [1] is found to be a highly successful method in analyzing nonstationary stochastic processes. So far the method has been applied to different areas of statistical analysis, for instance see [2] and the references therein. In this paper we apply the technique to the pseudorapidity (η) distribution of shower tracks coming out of 28Si-Ag(Br) events at an incident energy of 14.5A GeV. Each event has a shower track multiplicity n > 50. We compare the experiment with the prediction of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) [3].

In the MF-DFA formalism first a “profile” function Y is to be determined out of the data points x_k as:

\[Y(i) = \sum_{k=1}^{i} [x_k - \langle x \rangle], \text{ } i = 1, \ldots, N. \]

Then the profile Y(i) is divided into N_s \equiv \text{int}(N/s) segments of equal length s. Then the variance of each segment p with respect to the local trend:

\[F^2(p, s) = \frac{1}{s} \sum_{i=1}^{s} [Y[(p-1)s+i] - y_{p}(i)]^2, \]

is obtained. Here y_p(i) represents the local trend for the segment p. We consider a linear trend of the event-wise local particle density i.e., x_k = dn/dη. The density distribution plot (dn/dη against η) for a typical high multiplicity event is shown in Fig. 1. Finally, the qth order MF-DFA function is defined as:

\[F_q(s) = \left\{ \frac{1}{N_s} \sum_{p=1}^{N_s} [F^2(p, s)]^{q/2} \right\}^{1/q} \]

For any q ≠ 0. For q = 0 the definition is modified as:

\[F_0(s) = \exp \left\{ \frac{1}{2N_s} \sum_{p=1}^{N_s} \ln[F^2(p, s)] \right\}. \]

If the series x_k is a fractal one then F_q(s) for large s and for all q would exhibit a power-law scaling behaviour like: F_q(s) \sim s^{h(q)}. In general, for a multifractal series the exponent h(q) depends on q while for a monofractal series it is expected to be independent of q, i.e., h(q) = H, the Hurst exponent [4]. Moreover, for stationary series h(2) = H [4]. Thus, one can distinguish the function h(q) as the generalized Hurst exponent, which is related to the multifractal scaling exponent τ(q) as τ(q) = q h(q) − 1. The multifractal singularity spectrum f(α) is determined via a Legendre transformation: f(α) = qα − τ(q), where α = τ(q).

Since the method, originally developed for a nonstationary time series of effectively infinite length, is applied to a series of finite length (n ≥ 50), we average the MF-DFA fluctuation function F_q(s) over the total number of events (N_{ev} = 158) in our sample. Fig. 2 shows the event averaged MF-DFA fluctuation functions.

*Electronic address: provashmali@gmail.com

Available online at www.sympnp.org/proceedings
FIG. 2: Log-log plots of the event averaged MF-FDA fluctuation functions $F_q(s)$ with scale s.

$F_q(s)$ plotted against the scale s for several values of q. As expected both the experiment and the UrQMD generated plots follow the power-law type of scaling. The exponent $h(q)$ are calculated from the linear fits to the data points for $q = -5$ to $+5$. The order dependence of the generalized Hurst exponents is shown in Fig. 3(a) and the corresponding $\tau(q)$ exponent spectra and the multifractal spectra are shown, respectively, in Fig. 3(b) and 3(c).

However, the complete $f(\alpha)$ spectrum could not be obtained, because of its unusual behaviour in the $q < 0$ region, as is also seen in a similar analysis [5]. The observed nonlinearity in the $h(q)$ and $\tau(q)$ spectra and the concave nature of the $f(\alpha)$-spectra are clear signatures of multifractality in the η-distribution of the event samples analyzed. The experiment and the UrQMD exhibit more or less similar trends but the degree of multifractality is a little weaker in the simulation. The results of this analysis are almost consistent with those of our previous multifractal analysis using a different technique [6].

In summary, we have applied the multifractal detrended fluctuation analysis in order to characterize the η-distribution of charged particles emitted from 28Si-Ag(Br) collisions at an incident energy of 14.5A GeV. The results of our analysis show multifractal nature in the η-distribution for both the experiment and the UrQMD simulation. From our preliminary results it is expected that the MF-DFA method will reliably characterize the multifractal pattern of the phase-space distribution in high-energy heavy-ion collisions.

Acknowledgments: SS is supported by the DST, Government of India, through the INSPIRE programme, and SG is financially assisted by the University of North Bengal.

References

Available online at www.sympnp.org/proceedings