Systematic study of nuclear softness of superdeformed bands with N_pN_n scheme in $A=190$ mass region

Neha Sharma1,2,3,*, H.M. Mittal2, and A.K. Jain3

1CT Group of Institutions, Shahnur Campus, Jalandhar-144020, INDIA
2Dr. B.R. Ambedkar National Institute of Technology, Jalandhar-144011, INDIA and
3Department of Physics, Indian Institute of Technology, Roorkee-247667, INDIA

Introduction

A critical role of the proton-neutron (p-n) interaction in developing mixed configurations in nuclei has been recognized half a century ago by de-Shalit and Goldhaber [1], the importance of the valence p-n interaction in the evolution of nuclear structure have also been asserted by many authors. Talmi [2] was the first to emphasize that the p-n interaction may give rise to deformed nuclei. A simple pattern appeared whenever nuclear data concerning nuclear deformation was plotted against the product N_pN_n between the valence proton number N_p and the valence neutron number N_n [3]. This phenomenon has been referred to as “the N_pN_n scheme” in the literature [4]. More than two decades ago, a lead has been taken by many authors, in regarding the N_pN_n scheme as clear evidence of the p-n interaction being the dominant factor of inducing the nuclear deformation. Gupta et al. [5] studied the variation of softness parameter with the increasing deformation for deformed nuclei by using variable moment of inertia nuclear softness model. This study motivated us to study the softness parameter with N_pN_n for SD nuclei. Here, in this paper, we extend the same idea by studying the nuclear softness parameter with N_pN_n for the SD bands in $A=190$ mass region.

In the present work, we use a 4-parameter formula based on the prescription of Bohr and Mottelson [6, 7] to obtain the nuclear softness parameter σ for SD bands in $A=190$ mass region. We present the systematics of the softness parameter of the SD bands in $A=190$ mass region with the gamma ray energy ratio $R(I)=E_r(I \rightarrow (I - 2))/E_r((I - 2) \rightarrow (I - 4))$ and N_pN_n.

Results and Discussions

The 4-parameter formula has been used to fit the E2 gamma ray energies of all the SD bands in $A=190$ mass region. The experimental data are taken from Ref. [8] and the continuously updated ENDF and XUNDL databases [9]. We have considered only those SD bands for which some kind of estimates of spin assignments are available. A total 71 SD bands have been fitted in this mass region.

There is a close relation between the nuclear deformation and the p-n interaction and also between the N_pN_n scheme and the nuclear deformation. As already discussed, that whenever a nuclear data related to nuclear deformation plotted against N_pN_n, a simple pattern had appeared [3]. But in our case, the values of σ are found to be very scattered. Because some SD bands have large values of σ and some SD bands have small values of σ. One reason for large values of σ is that pairing correlations are dominant in those cases; however, the SD phenomenon is high spin phenomenon. In general, the value of softness parameter increases with increasing value of N_pN_n.

One thing which is to be noted that $^{195}Hg(1)$ and $^{195}Hg(2)$ have same value of softness parameter. Similarly, $^{194}Hg(2)$ and $^{194}Hg(3)$, $^{193}Hg(3)$ and $^{193}Hg(5)$, $^{192}Hg(1)$ and $^{192}Hg(2)$, $^{191}Hg(1)$ and $^{191}Hg(4)$ have also the same value of σ versus the same value of N_pN_n respectively. Similarly, the value of the softness parameter increases as the value of N_pN_n increases in other bands of $A=190$ mass region. The σ for $^{194}Tl(4)$ and $^{194}Tl(5)$,
$^{193}\text{Tl}(1)$ and $^{193}\text{Tl}(2)$, $^{192}\text{Tl}(3)$ and $^{192}\text{Tl}(4)$,
$^{191}\text{Tl}(1)$ and $^{191}\text{Tl}(2)$ have same value with
the same value of N_pN_n respectively. It has been observed that majority of SD bands in
$A=190$ mass region in odd-A nuclei, odd-odd nuclei and exited SD bands in even-even nu-
clei are signature partner SD bands [10]. It has also been observed that the value of band
moment of inertia J_0 of each signature partner SD bands in $A=190$ mass region are almost
identical [11, 12]. It is highly interesting to note that the value of the softness parameter
σ of the signature partner SD bands is also the same

Conclusions

In this present work, we calculate the nu-
clear softness parameter (σ) for SD bands
in $A=190$ mass region by using 4-parameter formula and present their systematics in the
scheme of N_pN_n. The nuclear softness parameter (σ) for SD bands lies in the range of
$10^{-3} \leq \sigma \leq 10^{-6}$ as compared to ND bands
having a range of $10^{-2} \leq \sigma \leq 10^{-4}$. Thus,
the SD bands are found to be much more rigid
than the ND bands. In general, the value of
σ increases as the value of N_pN_n increases,
which suggests that rigidity decreases as the
value of N_pN_n increases. It is highly inter-
esting to note that the signature partner SD
bands observed in $A=190$ mass region have
identical value of softness parameter (σ).

Acknowledgments

One of us NS thanks the MHRD for providing
the financial support throughout the re-
search work.

References

[5] J B Gupta, A K Kavathekar and Y P Sab-
1975).
[7] B. R. Mottelson, Proceeding of the Nu-
clear Structure Symposium of the Thou-
sands Lakes, Jousta, 1970 [Nordisk In-
stitut for Theoretisk Atomfysik, Nordita,
[8] B. Singh, R. Zywina and R. B. Firestone,
Table of superdeformed Nuclear Bands
and Fission Isomers, Nuclear Data Sheets
97, 241 (2002) and references therein.
[9] Evaluated Nuclear Structure Data File
(ENSDF) and Experimental Unevaluated
Nuclear Data List (XUNDL) databases
maintained at the National Nuclear Data
Centre, Brookhaven National Laboratory,
Upton, NY.
Jain, Proc. DAE Symp. on Nucl. Phys. 56,
332 (2011).
[12] H M Mittal and Neha Sharma, Interna-
tional Journal of Nuclear Energy Science
and Technology 7, 368 (2013).