Study of High Spin States of Odd Mass $^{103-107}$Rh Isotopes

Amit Kumar, Suram Singh, Chetan Sharma, and Arun Bharti*

Department of Physics and Electronics
University of Jammu, Jammu - 180006, INDIA

* email: arunbharti_2003@yahoo.co.in

Introduction

In recent years, the developments in the experimental techniques in nuclear physics have put forth immense data for nuclear structure elucidation. The nuclei in the mass region $A\approx 100$ with $40 \leq Z \leq 50$ exhibit several shape transitions and the energy levels of the nuclei lying in this mass region have been extended to high spins. In the recent past [1-4], high spin states of odd mass 103,105,107Rh isotopes have been studied by various experimental techniques with the aim of extending knowledge of nuclides in $A\approx 100$ region and investigating possible shape transitional effects.

The neutron-rich nuclei 103,105,107Rh have 45 protons and 58, 60, 62 neutrons respectively and hence lie in a mass region rather far from the shell closures at $Z=50$ and $N=50$, but on the other hand, are also outside the islands of well deformed nuclei [5].

The Model

In the present work, we have applied a theoretical framework known as Projected Shell Model (PSM) [6] to study the high spin states of odd mass 103,105,107Rh isotopes and have also compared the data with the available experimental data.

The total Hamiltonian employed in the present work is

$$H = \hat{H}_o + \frac{\chi}{2} \sum_\mu \hat{Q}_\mu \hat{Q}_\mu - G_M \hat{P}^\dagger \hat{P} - G_Q \sum_\mu \hat{P}_\mu \hat{P}_\mu$$

Where \hat{H}_o is spherical single particle Hamiltonian. The second term in the Hamiltonian is the quadrupole- quadrupole interaction and the last two terms are the monopole and quadrupole pairing interactions, respectively.

The strength of the quadrupole force χ is adjusted in such a way that the known quadrupole deformation parameter ε_2 is obtained by the usual Hartree-BCS self-consistent procedure. The monopole pairing force constants G_M are adjusted to give the known energy gaps. In the present calculations, the monopole pairing strength is taken as

$$G_M = \left(G_1 \mp G_2 \frac{N-Z}{A} \right) \frac{1}{A} (\text{MeV})$$

where \mp is for neutron (proton) while, in this work, G_1 and G_2 are chosen as 19.70 and 10.0 MeV for all the Rh isotopes under study. The strength parameter G_Q for quadrupole pairing is assumed to be proportional to G_M where the proportionality constant is adjusted to reproduce the $g_9/2$ crossing at the right place.

Fig. 1 Yrast spectra of a) 103Rh, b) 105Rh and c) 107Rh.
From the results of the calculations, it is found that:

- The experimental yrast states are very well reproduced by the present PSM calculations.
- The trend of experimental transition energies has also been reproduced qualitatively and quantitatively, which proves the reliability and validity of the applied framework in the region A≈100.
- The PSM calculations for 103Rh, 105Rh and 107Rh have been performed corresponding to prolate quadrupole deformation, which is in accordance with the experimental data.

In figures 1[a-c], yrast spectra of 103Rh, 105Rh and 107Rh respectively are presented whereas in figures 2[a-c], the transition energy versus spin is plotted for these isotopes, respectively.

![Fig. 1 Yrast spectra of 103Rh, 105Rh and 107Rh.](image_url)

Fig. 2 Transition energy versus spin plots of a) 103Rh, b) 105Rh and c) 107Rh.

References

