Evaporation residue cross-sections of $^{249}\text{Bk}+^{48}\text{Ca}\rightarrow^{297}\text{117}^\ast$ reaction

Kirandeep Sandhu1, Manoj K. Sharma1, and Raj K. Gupta2

1School of Physics and Material Science, Thapar University, Patiala - 147004, (Punjab) INDIA, and 2Department of Physics, Panjab University, Chandigarh - 160014, INDIA

Introduction

Synthesis of superheavy nuclei is an important research area in nuclear physics and the question of new magic numbers, the island of stability, and related aspects like the static deformations and orientations of reaction partners have been studied quite extensively in recent times. An equally important question is the decay of compound nucleus so formed. Experimentally, a large amount of data is recently made available on both the fusion and fusion-fission processes. For fission-less decays, the fusion cross-section is given by the fusion-evaporation residue cross-section alone. The production of a superheavy nucleus ($Z \geq 103$) is generally associated with the strong (microscopic) shell closure effects of nuclei which compensate the large Coulomb repulsive interaction. The macro-microscopic model predicts the magic proton shell closure in superheavy region at $Z=114$, whereas the same for microscopic Hartee-Fock-Bogoliubov and the relativistic mean field (RMF) theories are given at $Z=120$ or 126. The neutron magicity is predicted to be at $N=184$ in a majority of these calculations, though some RMF calculations favor $N=172$. A recent work on the dynamical cluster-decay model (DCM) [1], used here, shows the $Z=126$, $N=184$ as the best possible choice for the proton, neutron magic pair in the superheavy region.

In the present work, we have used the DCM [1, 2] for studying the decay of $^{297}\text{117}^\ast$ nucleus formed in $^{249}\text{Bk}+^{48}\text{Ca}$ reaction where the neutron evaporation residue cross-sections σ_{3n} and σ_{4n} have been measured, respectively, at compound nucleus excitation energies $E_{CN}^\ast=35.3$ MeV and only 4n cross-sections at 39.3 MeV. Also, some theoretical estimates are available for 2n decay, but the contribution of the 2n cross-sections is quite small in data, as the reaction used is apparently a hot fusion reaction. Static quadrupole deformations and optimum orientations of the target, projectile and decaying fragments are also included here, since these are known to play a significant role in the formation and decay of nuclear systems [4]. Thus, the 2n, 3n and 4n cross-sections are calculated in reference to the available data [3], taking $Z=126$ and $N=184$ as the possible magic numbers in the use of DCM where static deformations and orientations of the fragments are also included [1, 2].

The Model

The dynamical cluster-decay model (DCM) is a two-step model. The first step is the quantum mechanical preformation probability P_0 of the decay products (cluster and daughter) formed in mother nucleus, and the second step is the penetration P of the cluster through the interaction barrier. Both of these quantities, P_0 and P, are calculated, respectively, for the fragmentation and scattering potentials, where the effects of deformations and orientations of fragments are included. The decay cross-section is then defined as

$$\sigma = \pi \frac{k^2}{\ell^2} \sum_{\ell=0}^{\ell_{max}} (2\ell + 1)P_0P; \quad k = \sqrt{\frac{2\mu E_{CN}}{\hbar^2}},$$

with μ as the reduced mass and, ℓ_{max}, the maximum angular momentum, fixed for the light particles cross-section $\sigma_{LP} \rightarrow 0$ at $\ell = \ell_{max}$. The energy transfer during the process of tunnelling the interaction barrier can be re-
TABLE I: DCM calculated σ_{3n} and σ_{4n} cross-sections compared with experimental data.

<table>
<thead>
<tr>
<th>E_{CN}^* (MeV)</th>
<th>ΔR (fm)</th>
<th>σ_{ER} (pb)</th>
<th>DCM</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.3±2.1</td>
<td>1.565</td>
<td>3n</td>
<td>0.504</td>
<td>0.5</td>
</tr>
<tr>
<td>39.3±2.1</td>
<td>2.305</td>
<td>4n</td>
<td>1.02</td>
<td>1.3</td>
</tr>
</tbody>
</table>

lated as follows:

$$E_{CN}^* = E_{c.m.} + Q_{in} = Q_{out} + TKE(T) + TXE(T) \ (2)$$

with the compound nucleus excitation energy E_{CN}^* related to temperature T (in MeV) as $E_{CN}^* = 11T^2 - T$. All the quantities in Eq. (2) have their usual well known meanings.

Calculations and Results

Figure 1 shows the fragmentation potential for the reaction 249Bk$^{+}$+48Ca\rightarrow^{297}117* as a function of the light fragment mass for the nucleus 297117*. The interesting result is that the angular momentum does not seem to influence the fragmentation path in this reaction, and that the deformations and orientations effects of both the reacting partners and decay fragments are extremely desirable. Some component of 4He also seems to contribute towards the $4n$ ER cross-section.

In summary, $3n$ and $4n$ ER cross-sections data, respectively, at E_{CN}^*=35.3 and 39.3 MeV in the reaction 249Bk$^{+}$+48Ca\rightarrow^{297}117* are studied by using the DCM. The interesting result is that the angular momentum does not seem to influence the fragmentation path in this reaction, and that the deformations and orientations effects of both the reacting partners and decay fragments are extremely desirable. Some component of 4He also seems to contribute towards the $4n$ ER cross-section.

References