Band structure of some very neutron deficient Cesium isotopes

Rawan Kumar,* Rani Devi, Parvaiz Ahmad Dar and S.K. Khosa

Department of Physics and Electronics, University of Jammu, Jammu-180006, INDIA

* email: rani_rakwal@yahoo.co.in

Experimental data show that the very neutron-deficient $A \approx 120, Z=55$ cesium isotopes are well deformed and display a wealth of interesting collective structures. Smith et al [1] have performed high spin spectroscopy using the Gammasphere array and extended the previously observed negative parity band of 117Cs upto high spin. Liden et al [2] have extended the $h_{11/2}$ negative parity band of 119Cs upto spin $I=35/2^-$. Besides this some positive parity bands are also observed in 117,119Cs nuclei.

In order to investigate band structure of these very neutron deficient Cs nuclei, Projected Shell Model (PSM) [3] has been employed. The Hamiltonian employed in present work is

$$\hat{H} = H_0 - \frac{1}{2} \sum_{\mu} \frac{\hat{q}_\mu \hat{P}_\mu - G_M \hat{P}_\mu \hat{P}_\mu}{9} \chi G_Q \hat{h}_{11/2} \hat{h}_{11/2}$$

where H_0 is the spherical single-particle Hamiltonian. The strength of quadrupole force χ is adjusted such that the known quadrupole deformation parameter ϵ_2 is obtained by the usual Hartree+BCS self-consistent procedure. The monopole pairing force constant G_M are adjusted to give known energy gaps. For all the calculations, the monopole pairing strength G_M used in the calculations are

$$G_M^\pi = \left[19.60 - 15.70 \frac{N-Z}{A} \right] A^{-1}, \quad G_M^\nu = 19.60 A^{1/3}$$

These strengths are same as employed in the neighbouring even-even Barium isotopes [4]. The strength parameter G_Q for quadrupole pairing is assumed to be proportional to G_M. In present calculations G_Q is taken as 0.18 for both 117Cs and 119Cs.

In figure 1, comparison of experimental and theoretical negative parity bands is presented for 117,119Cs. It is observed from the figure that the calculated results are in reasonable good agreement with experimental data. In figure 2 the band diagrams for 117,119Cs are displayed. In case of 117Cs, one finds that observed negative parity band upto spin 27/2 is arising from two 1-qp proton bands having configurations $1h_{1/2}[1/2], K=1/2$ and $1h_{1/2}[-3/2], K=-3/2$. At spin 29/2* these two 1-qp proton bands are crossed by three 3-qp bands having configurations $1h_{1/2}[3/2] + 2h_{1/2}[-3/2,5/2], K=-1/2$, $1h_{1/2}[1/2] + 2h_{1/2}[3/2,5/2], K=1/2$ and $1h_{1/2}[-3/2] + 2h_{1/2}[-3/2,5/2], K=5/2$. Thus, above spin 29/2 the observed negative parity band is arising from these three 3-qp bands. In case of 119Cs the states of observed negative parity band upto spin 23/2 are arising from one 1-qp band having configuration $1h_{1/2}[1/2], K=1/2$ whereas the states above spin 23/2 are arising from the superposition of four 3-qp bands having configurations $1h_{1/2}[1/2] + 2h_{1/2}[3/2,5/2], K=3/2$, $1h_{1/2}[1/2] + 2h_{1/2}[1/2,5/2], K=5/2$ and $1h_{1/2}[-3/2] + 2h_{1/2}[-3/2,5/2], K=1/2$ and $1h_{1/2}[1/2] + 2h_{1/2}[1/2,5/2], K=5/2$. The detailed results of positive and negative parity bands for neutron deficient Cs nuclei would be presented in the symposium.

References:

Figure 1. Comparison of the calculated energies $E(I)$ of the negative parity band with experimental data of 117,119Cs isotopes. The calculated negative parity band consists of the lowest states after diagonalization at each angular momentum.

Figure 2. Band diagrams for 117,119Cs isotopes.