Polarization Asymmetry Measurements for the Yrast Band of 85Rb

S. Kumar1, V. Kumar1, Ritika Garg1, Naveen Kumar1, S. Verma1, S. Mandal1, T. Trivedi2, S. Saha2, J. Sethi2, Gayatri2, Arindam Nandi2, B.S. Naidu2, S.K. Jadav2, Rajneesh2, R. Palit2, D. Choudhary3, A.K. Jain3, Haridas Pai4, and G. Mukherjee4

1Department of Physics and Astrophysics, University of Delhi, Delhi- 110007, INDIA
2Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, INDIA
3Indian Institute of Technology Roorkee, Roorkee - 247667, INDIA and
4Variable Energy Cyclotron Centre 1/AF Bidhan Nagar, Kolkata 700064, INDIA

Introduction

The mass $A \approx 80$ transitional nuclei have recently been the focus of many experimental and theoretical studies. Interesting phenomena such as the magnetic rotation, superdeformation, loss of collectivity, band termination, and shape related effects have been identified in many of these nuclei. The structure of the Rb isotopes has been seen to vary from collective to nearly spherical with the increase in the neutron number towards $N = 50$. We note that the previous information in 85Rb for spin and parity (yrast band) is incomplete [1, 2]. We, therefore, obtained the structure information of 85Rb in order to understand the evolution of nuclear structure in $Z = 37$ isotopes. The results of the nuclear structure (spin and parity) of 85Rb obtained from present study are reported here.

Experimental Detail

The high spin states of 85Rb were populated in the 76Ge(13C,p3n)85Rb reaction at a beam energy of 45 MeV obtained from the 14 UD Pelletron Linac Facility at TIFR Mumbai. A 76Ge target of thickness $\approx 850 \mu$g/cm2 (isotopically enriched to 99.90%) with a backing of 181Ta (thickness ≈ 7.04 mg/cm2) was used. The gamma-rays were detected using Indian National Gamma Array (INGA). The array consists of 15 Compton-suppressed clover detectors arranged in spherical geometry with 3, 2, 2, 4, 2 and 2 number of clovers placed at 157$^\circ$, 140$^\circ$, 115$^\circ$, 90$^\circ$, 65$^\circ$ and 40$^\circ$ with respect to the beam direction, respectively. The distance from the target to crystal is 25 cm. The two fold clover coincidence events were recorded in a fast digital acquisition (DDAQ) system based on Pixie-16 modules by XIA-
We have confirmed previous known level scheme and assigned spin parity for the partial level scheme of 85Rb up to 6.0 MeV excitation energy and spin value around $31/2^-$, as shown in Fig. 1. The high-spin part of the 85Rb level scheme, as shown in Fig. 1, consists of the γ-rays above $21/2^+$. The cascade of 779-1183-1014 γ-rays belongs to the ground band. The level scheme above $21/2^+$, comprising the negative parity states, is shown in Fig. 1 whose spin and parity has been assigned in this work. These comprise seven states located between 3.0 and 6.0 MeV and constitute a group of levels consisting of 644, 621, 662, 1821, 1176, 107.0, 1284, 192, and 724 γ-rays. Most of the transitions have been observed to be in coincidence with the 779-keV, depopulating the lower level. These transitions have also been seen in the gates (as shown in Fig. 2), and are placed above the 3.0 MeV level from coincidence relationships, anti-coincidence relationships and intensity balance considerations. The spins and parities of these high spin states were assigned from DCO and polarization asymmetry as shown Fig. 3.

Acknowledgments

We thank all the participants of INGA, the accelerator staff at TIFR. Financial support from D.S.T., D.A.E. and M.H.R.D. (Govt. of India) is also gratefully acknowledged.

References