Hugenholtz-Van Hove Theorem for Multi-Component
Fermi Systems with Multi-body Forces

R. C. Nayak and S. Pattnaik
Dept. of Physics, Berhampur University, Berhampur-760007, INDIA

Introduction

The Hugenholtz-Van Hove (HVH) theorem [1] deals with the single-particle properties of an interacting infinite Fermi system at absolute zero of temperature relating three fundamental physical quantities namely, the average energy per fermion E/A, the pressure of the system and the Fermi energy ϵ_f as

$$\frac{E}{A} + \rho \frac{\partial (E/A)}{\partial \rho} |_{\Omega} = \left(\frac{\partial E}{\partial A} \right)_\Omega,$$

(1)

where ρ and Ω are respectively the number density and volume of the system. Hugenholtz and Van Hove also showed

$$\left(\frac{\partial E}{\partial A} \right)_\Omega = \epsilon_f,$$

leading to the theorem

$$\frac{E}{A} + \rho \frac{\partial (E/A)}{\partial \rho} |_{\Omega} = \epsilon_f.$$

(2)

The second term being the pressure of the system would vanish for a saturating system at ground state i.e. at equilibrium resulting in the Eq. $E/A = \epsilon_f$. This is a rare theorem in many-body Physics, which has been rigorously shown[1] to be true by its original authors Hugenholtz and Van Hove by taking all orders of perturbation in the framework of time-independent perturbation theory[1–5]. However it should be mentioned here that prior to this rigorous proof Bethe[6] had also visualized the theorem under HF approximation. It is valid for any interacting infinite Fermi system and thereby applicable to liquid 3He and in particular to nuclear matter. With its help Hugenholtz and Van Hove could find[1] internal inconsistencies in the early nuclear matter calculations of Brueckner [7]. Apart from its utility otherwise, Hugenholtz and Van Hove while proving the theorem have clearly brought out the physical meaning associated with the single particle states of an interacting many-fermion system.

The theorem has been recently extended [8] to asymmetric nuclear matter, which was then used for constructing a successful mass model well-known in the literature as the infinite nuclear matter (INM) model of atomic nuclei[9–12]. However the question of its validity in the presence of multi-body interaction terms remains unanswered. Similarly its extension to multi-component Fermi systems would be extremely useful.

HVH Theorem with Multi-body Forces

For this we follow Bethe[6] in adopting HF approximation. Taking the effective interaction for a many-body system to include all possible multi-body interaction terms $G_2, G_3, G_4, ..., G_n$, etc., the single-particle energy ϵ_i and the total energy E of the system under HF approximations are

$$\epsilon_i = \langle i | -\frac{\hbar^2}{2m} \nabla^2 | i \rangle + \sum_j < ij | G_2 | ij > + \sum_{ij} < ij \cdots n | G_n | ij \cdots n >$$

(3)

and

$$E = \sum_i < i | -\frac{\hbar^2}{2m} \nabla^2 | i \rangle + \frac{1}{2} \sum_{ij} < ij | G_2 | ij > + \sum_{ij} < ij \cdots n | G_n | ij \cdots n >.$$

(4)

*Electronic address: rcnayak00@yahoo.com

Available online at www.sympnp.org/proceedings
where $|i>$, $|j>$ etc. represent the occupied single particle states and $< i..n | G_n | i..n >$ denote the antisymmetric many-body matrix elements with the multi-body interaction G_n. For an infinite Fermi system, the above Eqs. can be further simplified as

$$\epsilon(k) = \frac{\hbar^2 k^2}{2m} + \frac{\Omega}{(2\pi)^3} \int_0^{k_f} <kk'|G_2|kk'> d^3k' + \ldots + \frac{1}{(n-1)!} \left[\frac{\Omega}{(2\pi)^3} \right]^{n-1} \int_0^{k_f} \ldots \int_0^{k_f} <kk_{n-1}k_n|G_n|kk_{n-1}k_n > d^3k_{n-1}d^3k_n$$

and

$$E = \frac{\Omega}{(2\pi)^3} \int_0^{k_f} \frac{\hbar^2 k^2}{2m} d^3k + \frac{1}{2} \left[\frac{\Omega}{(2\pi)^3} \right]^2 \int_0^{k_f} \ldots \int_0^{k_f} d^3k_1d^3k_2 \ldots d^3k_n <k_1..k_n|G_n|k_1..k_n>$$

where $\hbar^2 k^2/2m$ is the kinetic energy and $\int_0^{k_f} d^3k$ is the volume integral. The total energy E/A being a function of k_f, its derivative with respect to k_f at constant Ω can be easily obtained for all the multi-body interaction terms thereby leading to the HVH theorem (Eq. 2).

Extension to Multi-Component Fermi Systems

Consider the system to consist of n types of fermions, the number of each type being $N_i, i = 1, 2, n$, such that the total number N is equal to $N_1 + N_2 + \ldots + N_n$. Defining the fractional composition f_i by $f_i = N_i/N, i = 1, 2, n$, then the system will have n Fermi energies given by

$$\epsilon_i^f = \left(\frac{\partial E}{\partial N_i} \right)_{\Omega,N_1..N_{i-1},N_{i+1}..N_n}$$

As the total energy E being a function of N_1, N_2, \ldots, N_n or alternatively $N, f_1, f_2, \ldots f_n$, it follows that

$$\left(\frac{\partial E}{\partial N} \right)_{\Omega} = \left(\frac{\partial E}{\partial N_1} \right)_{\Omega,N_2,N_3..} \left(\frac{\partial N_1}{\partial N} \right) f_1 + \left(\frac{\partial E}{\partial N_2} \right)_{\Omega,N_1,N_3..} \left(\frac{\partial N_2}{\partial N} \right) f_2 + \ldots = \sum_{i=1}^{n} \epsilon_i^f f_i$$

Using Eq. (1), we arrive at the most generalized form of HVH theorem as

$$\frac{E}{A} + \rho \frac{\partial (E/A)}{\partial \rho} = \sum_{i=1}^{n} \epsilon_i^f f_i$$

which for ground state reduces to

$$\frac{E}{A} = \sum_{i=1}^{n} \epsilon_i^f f_i$$

It is needless to mention the utility of such a generalized HVH theorem that can be applied to any multi-component Fermi system.

References