Band structures in 98,99Rh Nuclei

Surender Kumar1, S. Sihotra*, K. Singh1, J. Goswamy1, N. Singh1, R. Palit2, S. Muralithar3, R. Kumar3, R.P. Singh3, R.K. Bhowmik3, and D. Mehta1

1Physics Department, Panjab University, Chandigarh-160 014, India.
2Department of Atomic and Nuclear Physics, Tata Institute of Fundamental Research, Mumbai, India
3Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi - 110067, India

* email:ssihotra@pu.ac.in

Introduction

The high spin structure of odd-A nuclei in mass region A \sim 100 has attracted many experimental and theoretical investigations in recent years because of several structural phenomena such as prediction of high spin terminating bands, magnetic rotation, and chiral rotation[1]. Further the study of nuclei close to doubly magic provide necessary insight into evolution of collective degrees from single particle ones. The 98,99Rh isotopes have odd proton in the $g_{9/2}$ and $p_{1/2}$ orbitals situated below the Z=50 gap and neutron occupy high-Ω orbitals. Strongly prolate driving low- Ω unique parity $h_{11/2}$ neutron orbital is accessible at low excitation energies for the nuclei with neutron number receding the N=50 shell closure. The coexistence of spherical and deformed shapes increases the complexity of the level structures.

In the present work, high spin data obtained for the 98,99Rh isotopes are presented. Previously the 99Rh had been studied by Chattopadhyay et al. [2] and Ghugre et al. [3] using the heavy ion reactions. The level scheme of 98Rh is previously reported work by Singh et al. [4] using 8 Ge detector array.

Experimental details and data analysis

The present work reports in-beam γ-ray spectroscopic measurements to study level structures in 98,99Rh isotopes. Excited states in 98,99Rh were populated in fusion-evaporation reaction 75As (28Si, xpyn) at $E_{lab} = 120$ MeV. The de-excitations have been investigated through in-beam γ-ray spectroscopic techniques. The 28Si beam was delivered by the 15UD Pelletron accelerator at Inter University Accelerator Centre (IUAC), New Delhi. The 75As target of thickness 3 mg/cm2 onto a 10 mg/cm2 thick Pb backing was prepared by vacuum evaporation followed by target and the de-excitations γ-rays were detected rolling. The recoiling nuclei were stopped within using the Indian National Gamma Array (INGA) equipped with 18 clover detectors mounted in a five rings configuration.

A total of about 300×10^6 triple or higher-fold coincidence events were recorded in the experiment. The clover detectors were calibrated for γ-ray energies and efficiencies using the 133Ba and 152Eu radioactive sources. The data were sorted offline using INGASORT program to produce symmetrised $E_\gamma-E_\gamma$ matrices and $E_\gamma-E_\gamma-E_\gamma$ cubes. The level schemes were establish using coincidence and intensity relationships for various gamma transitions. The spin-parity assignments to levels were made using DCO and polarization measurements. The previously known level scheme of 98Rh and 99Rh has been extended considerably with the addition of about 60 new γ-rays in each case. The placement of transitions observed in the previous work are revised and established.

Results and discussion

The present level scheme of 99Rh (Fig. 1) has been established up to $J = 59/2^+$. The identified bands have been labeled as B1-B5. The low lying band structures are based on $\pi g_{9/2}$ and $\nu h_{11/2}$ quasiparticles which further evolve into high spin structures following $(\nu h_{11/2})^2$ alignment. The level scheme is a significant extension to those reported in the earlier work by Singh et al. [4]. The present level scheme preserves major features of the previously observed band to be based on $\pi p_{1/2}$ and $\pi g_{9/2}$ quasiparticles which further evolve into high spin structures following $(\nu h_{11/2})^2$ alignment. The level scheme is a significant extension to those reported in the earlier work by Singh et al. [4]. The present level scheme preserves major features of the previously observed band to be based on $\pi g_{9/2}$ and $\nu h_{11/2}$ quasiparticles which further evolve into high spin structures following $(\nu h_{11/2})^2$ alignment. The previously observed single quasiparticle bands based on $h_{11/2}$, $g_{7/2}$, and $d_{5/2}$ neutron orbitals have been substantially extended.

Multifragmentations at the positive parity and negative parity bands at spins around 20$^+$ is observed, which are likely to be maximally spin aligned states similar to the ones observed in 100Rh [5].

Available online at www.sympnp.org/proceedings
The present level scheme of 98Rh has been established up to $E \approx 10$ MeV and $J = 21h$. The level scheme has been extended substantially at the low excitation energies. A few low-lying states likely to be isomers are observed in the present level scheme with excitation energy lower than the previously assigned 2^+ ground state. It suggests that the earlier proposed 2^+ ground state needs to be reassigned. Major changes in the level scheme of 98Rh and its interpretation is expected in the present investigations.

Acknowledgement

The authors would like to thank the collaboration of IUAC, New Delhi, TIFR, Mumbai, IUC-DAEF and SINP, Kolkata, for establishing the INGA clover detector array. Financial support from UGC, New Delhi is duly acknowledged.

References