Occurrence of isomer pairs in transfermium nuclei
R. Gowrishankar*, K. Vijay Sai and P.C. Sood
Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthniliyam - 515134, A.P., INDIA
* email: rgowrishankar@sssihl.edu.in

Some 25 years ago, Sood and Sheline [1] had carried out a systematic study of long-lived isomer (LLI) pairs in medium-heavy (A=150-190) and heavy (A=225-250) deformed nuclei. Here we report the results of a similar survey for the transfermium (Z>100, A>250) nuclei. This survey reveals several features which are unique to this region as briefly discussed in the following.

Firstly we outline why isomer identification in this region has remained unexplored till very recently. Whereas transuranic nuclides with Z≤100 can be had in weighable amounts, transfermium nuclei are synthesized in heavy ion fusion-evaporation reactions. For transactinides, the production cross section σ goes down to nanobarns (nb) such that only a few atoms are produced in experiments over a few days to even a month. Earlier, physics research in this region was carried out with 'single atoms' of an element. Evidently 'single atom' studies could not yield precise spectroscopic data on energies/lifetimes of individual nuclear states. It was only after appropriate experimental set up ensuring adequate production in nb cross section reactions along with facilities for the α-γ and/or α-Xray spectroscopy became available [3,4] that information on isomer pairs started coming in.

Condition for the occurrence of isomer pairs is that two closely spaced nuclear states (including g.s.) of a specific nucleus JγπN have ΔI≥3. In cases, wherein ΔI>4, isomeric transition (IT) connecting the two states is insignificant and hence their relative energy ordering, and g.s., remains undefined. Isomer characterization requires knowledge of the single particle (sp) level sequencing for neutrons and also for protons. A schematic drawing of such a level scheme [5] for this region is shown in Fig.1. From this figure, it is clear that, as noted by Sood and Sheline [1], odd-A actinides with A<250 cannot have LLI pairs, since ΔI≥3 condition is not fulfilled for any two close-by orbitals in this region.

Also we note from Fig.1 that no two adjacent n-orbitals within N=153-162 range have ΔI≥3 and hence no LLI pairs should be expected therein. The presently available experimental information [2] on LLI pairs is summarized in Table 1. We see from this that, contrary to these expectations, LLI pairs have been identified in every odd-N = 151-161 species.

Inadequacy of sp level scheme to satisfactorily describe the experimental excitation energies of various orbitals in N=151 and N=153 isotones has also been pointed out recently [6,7]. Further, the g.s. configuration of N=155 isotones has been experimentally determined as follows:

\[^{251}_{96}\text{Cm}: 1/2[620]; \quad ^{253}_{98}\text{Cf} & ^{255}_{100}\text{Fm}: 7/2[613]; \quad ^{259}_{102}\text{No} & ^{261}_{106}\text{Sg}: 3/2[622]. \quad \ldots (1) \]

However, in the sp picture, all odd-N isotones should have the same orbital as the respective g.s. Also a recent investigation [7] of α-γ decay of \(^{261}\text{Sg}\) concluded that 11/2[725] isomeric level occurs at Eγ=300 keV with t1/2=0.5μs in \(^{253}\text{Fm}\), while in isotonic \(^{257}\text{Rf}\) it has Eγ=70 keV and t1/2=4.9s (a stupendous increase of 7 orders of magnitude in t1/2).

In the single particle picture, a given orbital

\[\beta_2=0.28 \quad \beta_4=0.0 \quad \beta_2=0.28 \quad \beta_4=-0.04 \]

Neutrons

Protons

\[\beta_2=0.28 \quad \beta_4=0.0 \quad \beta_2=0.28 \]

Fig. 1 Schematic single particle level diagram [5] for transfermium region. The energy ordering of levels is only qualitative; it changes significantly for β4 ≠ 0 and also for varying N:Z ratio.

Available online at www.sympnp.org/proceedings
should have nearly the same \(E_x\) and \(t_{1/2}\) at same deformation in an isotonic sequence.

As suggested by Asai et al.\([7]\), these variations in sp energies are due to the 'influence of rapidly decreasing \(\beta_i\) value with increasing atomic number'. For the n-deficient nuclei produced in cold fusion reactions at GSI, \(\beta_i\) has a value around -0.04. Significant rearrangement of sp levels results as \(\beta_i\) is changed from 0 to -0.04 for fixed \(\beta_2\), as shown in Fig.1 for protons. The neutron sp levels also undergo similar rearrangement, bringing the high-spin (11/2, 9/2+) levels in close proximity to the low spin levels (1/2+, 3/2+, 1/2). These variations result in the occurrence of LLI pairs in the N=151-161 domain.

K-isomers are another category of isomers appearing in this region. Calculations estimate the neutron pairing gap between N=152 and N=162 shell gaps to be around 500 keV. Experimentally low-lying (≤1MeV) isomers having high K values, corresponding to 2qp structures, have been identified\([2]\) in several e-e nuclei. K-isomers are also expected, and seen, around 1MeV in a few odd-A nuclei.

Since most of the data in Table 1 has come within last 3-4 years, it may be just a preview of more extensive information likely to come out within next few years from upgraded facilities having more intense beams and considerably improved \(a-\gamma\)/\(a-CE\) spectroscopic set ups. Detailed and precise information on energy levels of SHE nuclei is awaited to better understand the structure of these long-lived isomer pairs.

References