Isospin dependence of the microscopic proton potential

S.Rafi\(^1\)*, Manjari Sharma\(^1\), Dipti Pachouri\(^1\) and W. Haider\(^1\)

\(^1\)Department of Physics, AMU, Aligarh-202002, INDIA

* email: rafiindrabi@gmail.com

Lane [1] has suggested the isobaric spin dependence of the optical potential and has shown that it gives rise to a \((N-Z)/A\) dependence of the depth of the Optical Potential. The depth of the real nucleon-nucleus optical potential can be written as

\[V = V_0 + V_1 (N-Z)/A + \frac{V_C}{A} \]

\(V_1\) is the strength of isospin potential. + (-) sign applies to proton (neutron) Optical potential respectively. As Lane pointed out knowledge of \(V_1\) is important for several distinct classes of phenomena including nuclear symmetry energies, nuclear scattering data and exchange scattering to the isobaric analogue states. Assuming the linear energy dependence of the real part of the optical potential \(V_0(E) = V_0(0) + \beta E\) where \(E\) is the incident kinetic energy of the proton and \(\beta = -0.3\) Perey [2] estimated the magnitude of the Coulomb correction term to be \(0.4Z/A^{1/3}\).

Hodgson [3], Rook [4], Sood [5], Koning and Delaroche [6], Nadasen [7], and J. Ball [8] et al. independently studied the dependence of real nuclear potential well depth on nuclear symmetry parameter \((N-Z)/A\) using empirical analysis.

In present work, to investigate the isospin term microscopically, we have followed the procedure outlined below.

We have calculated the volume integral per nucleon \(J_v/A\) from our microscopic potential for a range of isotopes of \(Zr\) and \(Sn\) at two different energies. Since the radial form of the calculated potential is not necessarily Saxo-Woods we would have to study \((N-Z)/A\) dependence of the volume integrals. From the calculated volume integrals we would have to subtract the contribution coming from volume integrals of the isoscalar term \(V_0\) and the Coulomb term \(V_C\).

To estimate the contribution in the volume integrals of Coulomb correction term we use the approximation of a Saxo-Woods form factors.

We define Volume integral \(J_v\) as

\[J_v = \int_0^\infty 4\pi V(r)r^2dr \]

\(V(r)\) is the real part of Optical Model Potential. If we assume a Saxo-Woods radial form, the Real Volume Integral \(J_v\) can be evaluated (approximately to order \(a/R^2\)) as:

\[J_v = \frac{4}{3} A\pi r_0^3 V_0 \left[1 + (\pi a_0 / R_0)^2 \right] \]

We calculate \(J_v\) (volume integral of the coulomb correction term) for each isotope of \(Zr\) and \(Sn\).

Now the left hand side of the equation is known for each isotope as \(J_v/A\) has been calculated microscopically using first order Brueckner theory. The right hand side of this equation can be treated as a straight line equation with \((N-Z)/A\) as the independent variable. The straight line fit gives the value of \(J_0\) and \(J_1\) and thus we...
get the estimate of potentials V_0 and V_1. The variation of $\frac{J_0}{A} - J_1$ with $(N-Z)/A$ is shown in the figures below.

In estimating V_0 and V_1 from their Volume integrals J_0 and J_1 we have assumed the Saxon-Woods behavior of their form factors. The radius and diffuseness parameters r_0, a_0 from the recently obtained Global optical potential of Koning & Delaroche [6] have been used. We also compare our results with the values obtained by different people using empirical analysis.

Using our analysis we conclude that the average values for all the isotopes of Zr and Sn are:

For Zr at 22.5 MeV
$V_0 = 42.65$ MeV
$V_1 = 32.05$ MeV

For Zr at 50 MeV
$V_0 = 32.93$ MeV
$V_1 = 24.58$ MeV

For Sn at 20.4 MeV
$V_0 = 44.69$ MeV
$V_1 = 24.58$ MeV

For Zr at 50 MeV
$V_0 = 32.93$ MeV
$V_1 = 19.21$ MeV

For Sn at 50 MeV
$V_0 = 33.25$ MeV
$V_1 = 12.95$ MeV

We observe an energy dependence of the value of V_0 as well as V_1. Value of β comes out to be -0.35 which is close to the value calculated by Perey [2].

This energy dependence of V_1 and V_0 was also predicted by A. Nadasen et.al [7] and Koning et.al [6] independently. They found the following variation

$$V_1(E) = 59(1-0.18 \ln E)$$

and

$$V_0(E) = 21-0.15E$$

respectively.

We observe that our results for the calculation of both V_0 and V_1 are in agreement with the results from above approximations and both decrease with energy as also found in [10]. The values of V_1 are smaller than empirical results as is found by Hodgson [11] also.

References:

Available online at www.sympnp.org/proceedings