A Study of neutron scattering from 232Th for the energy range from 10-20 MeV using the Poschl-Teller potential.

J.J. Jeremiah & B.M. Jyrwa*

Department of Physics, North Eastern Hill University, Shillong – 793022, India.

* email: bjrwa90@hotmail.com

Introduction

Neutron scattering cross-sections on various materials has been methodically studied. In this paper we analysed various cross-sections, polarizations, angular distribution of n-Th scattering in the energy range of 10-20 Mev using the PT [1] Potential. Basically empirical estimates were carried out.

Analysis

We could establish the energy dependence of the total cross-section and the half width α. Essentially the potential used is

$$V_T = -V_f(r) - iV_g(r) - iW_g(r) + l.sC_{20}V_{20}h(r)$$

The Solutions of the Schrödinger Equation was carried out using Fox-Goodwin method. Eventually phase shifts were evaluated, then the Scattering Matrix and the Transmission Co-efficient. There is almost an agreement in the Total cross-sections obtained from experimental works and other theories like optical model and calculations using the code TALYS. The Scattering Matrix is given in Fig 1., and the Transmission Co-efficient is shown in Fig 2. The Total Cross-Section is depicted in Fig 3. The parameters used in the model are shown in table 1, along with the values of χ^2. The variation of α with energy (E) is shown in table 2.
Conclusion

This gave us the motivation to calculate n-scattering with other common actinides used in ADS and to extend to higher energies up to 200 MeV in future, so that we can apply our work to the accelerator driven sub-critical (ADS) system.

Reference

Available online at www.sympnp.org/proceedings