Projected shell model study of yrast bands of some odd mass
N=61 isotones

Monika Mahajan, Daya Ram,* Rani Devi , and S.K Khosa

Department of Physics & Electronics, University of Jammu, Jammu -180006, INDIA
* email: rani_rakwal@yahoo.co.in

With the advent of new experimental tools the level scheme of N=61 nuclei have been extended to higher spins [1-4]. For example, for 101Zr and 103Mo [1] the ground state bands have been extended from spins 23/2$^+$ to 39/2$^+$ and 31/2$^+$ to 39/2$^+$, respectively. The signature splitting has been observed in 101Zr and 103Mo isotopes. Particle rotor model [5,6] has been employed to study the signature splitting phenomenon in these nuclei. To interpret the latest experimental data and to study the structure of yrast bands in some N=61 isotones, projected shell model (PSM) approach has been employed.

The Hamiltonian [7] employed in the present work is

\[H = H_0 - \frac{1}{2} \sum_\mu \left[\chi Q_{\mu}^2 - G_P P_{\mu}^2 - G_Q \sum_\mu P_{\mu}^2 \right] \]

where H_0 is the spherical single-particle Hamiltonian. The second term in the Hamiltonian is the quadrupole-quadrupole interaction and the last two terms the monopole and quadrupole pairing interaction, respectively. The strength of the quadrupole force χ is adjusted such that the known quadrupole deformation parameter E_2 is obtained. This condition results from the mean field approximation of quadrupole-quadrupole interaction of the Hamiltonian in above equation. The monopole pairing force constant G are adjusted to give known energy gaps. The strength parameter G_Q for quadrupole pairing is assumed to be proportional to G_M.

In the present piece of work, the yrast energies and transition energies of yrast bands of 101Zr, 103Mo, 105Ru and 107Pd have been obtained. In Fig.1, the transition energies are presented for 101Zr, 103Mo, 105Ru and 107Pd, respectively. For 101Zr and 103Mo there are [E(I)-E(I-1)] transitions in the experimental data and the available experimental data shows staggering in the yrast band. It can be seen that energy staggering in the yrast bands for 105Ru and 107Mo are reproduced qualitatively by PSM calculations. In case of 105Ru and 107Pd experimental data shows E2 transitions in the yrast bands and so energy staggering is absent in these nuclei. In case of 105Ru and 107Pd, the theoretical [E(I)-E(I-2)] transition energies are compared with the experimental data in Fig.1. In case of 105Ru, the increasing trend of [E(I)-E(I-2)] displayed in fig.1 is reproduced by theoretical results. In case of 107Pd, the transition energy versus spin graph reproduces the experimental transition energies up to spin 10.5h. For the higher spins the deviation from the experimental data is more.

References

Fig. 1 Comparison of the calculated transition energies with experimental data for some N=61 isotones.