Intrinsic Structures in highly n-deficient odd-odd nucleus 158Ho

*K. Vijay Sai, R. Gowrishankar and P. C. Sood

Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (A.P), 515134

* email: vjsai.phy.psn@sssu.edu.in

The observed [1] level scheme for the highly neutron-deficient odd-odd nucleus 158Ho (which has 7 neutrons less than the stable isotope 165Ho) has several distinctive features. Firstly, it has 3 long-lived isomers with comparable half-lives, namely, an 11.3m $^{5+}$ ground state, a 28m $^{2-}$ isomer at 67.2 keV and a 21.3m $^{9+}$ isomer. As listed in the latest [1] Nuclear Data Sheets (NDS), Sood et al. [2] had earlier reported two-quasiparticle (2qp) configuration for these 3 isomers, placed the $^{9+}$ isomer at ~180keV, and also assigned 2qp configuration to the 29ns isomeric state at $E_x=156.9$ keV. However, the latest NDS evaluation of 158Er γ-decay [1], while incorporating the allowed-unhindered decay to a newly identified 1$^+$ level at 146.90 keV [3] superseding the earlier reported 139.2 keV 1$^+$ level, does not include any characterisation whatsoever of the other 9 levels of 158Ho populated in this decay. The present study reports the results of such an investigation, based on a critical examination of the available configuration space and the results of Quasi-Particle Rotor Model (QPRM) calculation of various 2qp bandhead energies.

Fig. 1: Experimental [4] excitation energies of N=91 (157Dy) and Z=67 (157Ho) n and p Nilsson orbitals in (A-1) isotope/isotope relevant to the level spectra of odd-odd 158Ho. Following convention of Jain et al. [5], the particle/hole states are placed above/below the respective Fermi level.

\[157_{\text{66}}^{} \text{Dy}_{91}\]

\begin{align*}
1/2^+[521\downarrow] & : 464 & \quad \text{n}_7 \\
5/2^+[523\downarrow] & : 341 & \quad \text{n}_4 \\
5/2^+\uparrow [642\uparrow] & : 188 & \quad \text{n}_1 \\
3/2^+\uparrow [521\uparrow] & : 0 & \quad \text{n}_0 \\
11/2^+[505\uparrow] & : 199 & \quad \text{n}_2 \\
3/2^+[651\uparrow] & : 235 & \quad \text{n}_3 \\
3/2^-[532\downarrow] & : 350 & \quad \text{n}_5 \\
1/2^-[400\uparrow] & : 388 & \quad \text{n}_6 \\
\Omega^+[\text{Nn}_3\Lambda\Sigma] & : \text{n}_i \\
p_5: & 482 & \quad 1/2^+[541\downarrow] \\
p_0: & 0 & \quad 7/2^+[523\uparrow] \\
p_1: & 53 & \quad 5/2^+[402\uparrow] \\
p_2: & 67 & \quad 7/2^+[404\downarrow] \\
p_3: & 175 & \quad 3/2^+[411\uparrow] \\
p_4: & 391 & \quad 5/2^+[532\uparrow] \\
p_5: & E_x(\text{keV}) & \quad \Omega^+[\text{Nn}_3\Lambda\Sigma]
\end{align*}

Available online at www.sympnsp.org/proceedings
Table 1: Two-quasiparticle (2qp) bands expected in 158Ho based on the observed[4] 1qp orbitals in respective (A-1) isotone/isotope as seen in Fig. 1. Entries in each box are $K^=\Omega_p\Omega_n$ values with the spins-parallel K_T listed first and spins-antiparallel K_S next for each GM doublet. $K^=\Omega_p\Omega_n$ of confirmed levels are shown in bold. Except n_2 (for 21m 9^+ isomer), only orbitals relevant to 168Er EC decay are included herein. All E_x are rounded off values in keV.

<table>
<thead>
<tr>
<th>p_i:</th>
<th>E_x:</th>
<th>n_i:</th>
<th>E_x:</th>
<th>n_i:</th>
<th>E_x:</th>
<th>n_i:</th>
<th>E_x:</th>
<th>n_i:</th>
<th>E_x:</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i:</td>
<td>E_x:</td>
<td>n_i:</td>
<td>E_x:</td>
<td>n_i:</td>
<td>E_x:</td>
<td>n_i:</td>
<td>E_x:</td>
<td>n_i:</td>
<td>E_x:</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>7/2[531]</td>
<td>5'</td>
<td>2'</td>
<td>0</td>
<td>75</td>
<td>6'</td>
<td>1'</td>
<td>0</td>
<td>5'</td>
<td>2'</td>
</tr>
<tr>
<td>5/2[402]</td>
<td>4'</td>
<td>1'</td>
<td>5'</td>
<td>0'</td>
<td>0</td>
<td>5'</td>
<td>2'</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>2'</td>
<td>67</td>
<td>5'</td>
<td>157</td>
<td>1'</td>
<td>6'</td>
<td>0</td>
<td>5'</td>
<td>2'</td>
<td>3'</td>
</tr>
<tr>
<td>3/2[411]</td>
<td>3'</td>
<td>0'</td>
<td>4'</td>
<td>1'</td>
<td>0</td>
<td>5'</td>
<td>2'</td>
<td>3'</td>
<td></td>
</tr>
<tr>
<td>5/2[532]</td>
<td>4'</td>
<td>1'</td>
<td>5'</td>
<td>0'</td>
<td>0</td>
<td>5'</td>
<td>2'</td>
<td>3'</td>
<td></td>
</tr>
</tbody>
</table>

The experimentally identified[4] single particle Nilsson orbitals $\Omega_pA\Omega_n\Lambda\Sigma$ and their observed excitation energies (input data for QPRM) in the respective (A-1) isotope and isotone, namely 157Ho and 157Dy are shown in Fig. 1. The 2qp band quantum numbers, $K^=\Omega_p\Omega_n$ for each ($\Omega_p\Omega_n$) coupling expected in the odd-odd nucleus 158Ho are listed in the Table 1. This table includes K-listings only for the 2qp bands with confirmed assignments (bold entries[1-3] or bands expected to be populated in 158Er decay.

Our analysis confirm (entries in bold in table 1) the earlier[1-3] 2qp assignments to the 3 isomers and the two isomeric states at 146.7 keV(1.85ns) and at 156.9 keV(29ns). All the other 9 levels populated in 158Ho from 158Er ($I^=0^-$) ε-decay are reported[1] to have $5.20 < \log ft < 6.25$, and hence have $J=0$ or 1. The observed multipolarities of respective decay restrict spin-parity still further.

The NDS adopted levels [1] list $J^=1^+, 2^+, 3^+$ for the 91.8 keV level based on M1 γ to 2$^-$ level. If we further note that it has log $ft = 5.95$ from 0$^+$ Er, (1f: $\Delta I=0.1$, $\Delta\pi=\text{yes}$) the only choice left is $J^=1^+$. A look at our table 1 for appropriate energy uniquely yields the 2qp assignment,

91.8 keV: $1^+\{p:5/2[402] – n:3/2[521]\} --- (1)

This (p_1n_0) assignment is consistent with the observed M1 γ from this level to the 67 keV 2$^-$ with (p_2n_0) configuration. Its GM triplet partner with $K^=4^-$ is expected to lie lower at (40±20)keV.

Preliminary analysis of the data of ε-fed levels in 158Ho yields the following tentative assignments:

- 241 keV [1+, p_2n_1]; 386 keV [10; p_1n_0];
- 433 & 462 keV 1$^+$ levels: (p_3n_1 and p_1n_0);
- 438 keV [1-, p_2n_4]; 663keV [1+, p_3n_4] --- (2)

Detailed investigations of these structures using QPRM are being pursued.

References