Random matrix ensembles with parity preserving random interactions

Manan Vyas, V.K.B. Kota, and P.C. Srivastava
Physical Research Laboratory, Ahmedabad - 380 009, INDIA

Introduction

Parity ratio of nuclear level densities is an important ingredient in nuclear astrophysical applications [1]. It is now well understood that at moderate excitation energies the parity ratio is not close to unity as assumed in the past. Recently, a Fermi gas model has been developed and used for tabulating parity ratios as a function of excitation energy in large number of nuclei of astrophysical interest. However, a good ab-initio theory for parity ratios is not yet available. With the success of random interaction matrix ensembles (RIMM) [2, 3], one can argue that the ensembles generated by parity preserving random interaction (hereafter called RIMM-PTY) may provide some generic results for parity ratios. In addition, there is also the important recognition in the past few years that random interactions generate regular structures [4]. Then a question is: why ground states of even-even nuclei are always of +ve parity. A simple RIMM-PTY has been identified and analyzed recently [5] to address the question of 'abundance of ground states with positive parity'. Going beyond this, we have constructed more general RIMM-PTY to address the two issues mentioned above and also to examine the form of fixed parity state densities. Here we will give the definition of RIMM-PTY, a method for its construction and some first results.

RIMM-PTY Ensemble

Given N_+ number of positive parity single particle (sp) states and similarly N_- number of negative parity states, let us assume for simplicity that the +ve and -ve parity states are degenerate and separated by energy Δ (see Fig. 1). This defines the one-body part $h(1)$ of the Hamiltonian H with $N = N_+ + N_-$ sp states. The matrix for the two-body part $V(2)$ of H will be a 3×3 block matrix in two particle spaces as there are three possible ways to generate two particle states with definite parity: (i) both in +ve parity states; (ii) both in -ve parity states; (iii) one in +ve and other in -ve parity states. They will give the matrices A, B and C respectively in Fig. 1. For parity preserving interactions only the states (i) and (ii) will be mixed and mixing matrix is D in Fig. 1.

Many particle states for m fermions in the N sp states can obtained by distributing m_1 fermions in N_+ +ve parity sp states and similarly m_2 fermions in the N_- states with $m = m_1 + m_2$. Let us denote each distribution of m_1 fermions by \tilde{m}_1 and similarly \tilde{m}_2. In the many particle basis defined by $(\tilde{m}_1, \tilde{m}_2)$ the H matrix construction reduces to the well known spinless fermion problem [2]. The matrix dimensions (d_{\pm}) for +ve parity states follows from the dimensions for all (m_1, m_2) with m_2 even and similarly for -ve parity states (d_{\mp}) with m_2 odd. For example: (i) for $N_+ = N_- = 7$ and $m = 6$, $d_+ = 1484$.

*Electronic address: praveen@prl.res.in

Available online at www.sympnp.org/proceedings
and $d_- = 1519$; (ii) for $N_+ = N_- = 8$ and $m = 6$, $d_+ = 3976$ and $d_- = 4032$.

The RIMM-PTY is defined by choosing the matrices A, B and C to be independent GOE’s with matrix elements variances v_{A}^{2}, v_{B}^{2} and v_{C}^{2} respectively. Similarly the matrix elements of the mixing D matrix are chosen to be independent (independent of A, B and C matrix elements) zero centered Gaussian variables with variance v_{D}^{2}. Without loss of generality we choose $\Delta = 1$ so that all the v’s are in Δ units. Defining the matrix elements variances of the diagonal blocks A, B and C to be same (to reduce number of free parameters in RIMM-PTY), we have the RIMM-PTY model defined by two parameters (τ, α) where

$$ v_{A}^{2} = v_{B}^{2} = v_{C}^{2} = \tau^{2} \text{ and } v_{D}^{2} = \alpha^{2} \tau^{2}. $$

In the limit $\tau^{2} \to \infty$ (with $\alpha^{2} = 1$) the model reduces to the simple model analyzed in [5].

Results and Discussion

Firstly, for $N_+ = N_- = m = 6$ system with 200 members, we have verified (using large values for τ and putting $\alpha = 1$) that $R_+ \sim 20\%$ as given in [5]. Going beyond this, calculations with 100 members for $N_+ = N_- = 7$ and $m = 6$ system are performed using different values for τ and α parameters defined above. We have numerically studied: (i) percentage of $+ve$ parity ground states R_+; (ii) shapes of $+ve$ (ρ_+) and $-ve$ parity (ρ_-) state densities; (iii) parity ratio ρ_-/ρ_+. The first results are as follows. It is seen that with (τ, α) variation, R_+ shows variation and for example: for $\alpha = 0.2$, R_+ changes from 100% to 75% as τ varies from 0.03 to 0.2 and for $\alpha = 2$, $R_+ \sim 100\%$ as τ varies from 0.03 to 0.2. The state densities ρ_+ and ρ_- and the ratio ρ_-/ρ_+ are shown in Fig. 2 for some examples. For small τ values, the densities are multi-modal and as τ increases to 0.2, they approach Gaussian form. This is verified for $\alpha = 0.2$ to 2. We observe considerable structure in ρ_-/ρ_+ for small τ values. For $\tau \sim 0.2$ and larger, it is seen that $\rho_- \sim \rho_+$ for $E - E_{gs} > \sigma$. Here gs stands for ground state and σ is average width over the ensemble for $+ve$ and $-ve$ parity state densities. Similarly in Fig. 1, for ρ_+ and ρ_- densities, E_c is energy centroid and σ is spectral width for the corresponding densities. We are attempting to derive analytical results for spectral variances to understand R_+ variation and also the variation in ρ_+, ρ_- and ρ_-/ρ_+. Also calculations are being carried out for many different values of (N_+, N_-, m) values and for a much larger range of (τ, α). It is important to identify the range of (N_+, N_-, m) and (τ, α) values appropriate for some typical nuclei and then determine R_+, ρ_+, ρ_- and ρ_-/ρ_+ for these system using RIMM-PTY. This exercise is being attempted.

We thank E.R. Prahlad and G. Vignesh for collaboration in the initial stages.

References

Available online at www.sympnp.org/proceedings