Impact of spallation neutrons on criticality

Chitra Bhatia and V. Kumar*

HENP Laboratory (ADS Program), Physics Department, University of Rajasthan, Jaipur, India

*e-mail: vkv1951@gmail.com

Neutron spectrum in an accelerator driven sub critical system is different to the neutron spectra of thermal and fast reactors. The spallation neutron spectrum falls over a nuclear fuel in an ADS. Thus, for an arbitrary nuclear fuel, production and absorption cross sections of neutrons would vary with the incident neutron energy and the criticality coefficient, k_{eff} is expected to behave differently to a thermal or the fast reactor. For developing methods of estimation of k_{eff} in an ADS, let us assume that there is a cylindrical spallation target of dimension $d \times L = 20 \times 50$ cm2 enclosed in side a fuel blanket of thickness X. The energy spectra of spallation neutrons produced in collision of 1GeV proton with a thick lead target is simulated using the CASCADE code [1] and the standard neutron spectra [2] of the thermal and a fast reactor have been used to estimate the spectrum average cross sections of different reactions occurring in different fuel elements such as 232Th and 235U of an arbitrarily assumed fuel system of an ADS. Spallation neutron spectrum spread up to several hundred MeV, may cause several reactions such as 232Th (n,3n) ($E_{\text{th}} = 11.61\text{MeV}$), 232Th (n,3np) ($E_{\text{th}} = 18.82\text{MeV}$) and 232Th (n,8n) ($E_{\text{th}} = 43.55\text{MeV}$) etc. that were not possible in a critical reactor. The main problem arising because of spallation neutron spectrum is that in the energy range $E_n > 20\text{MeV}$ the experimental data is scarce and in this situation one has to depend on the calculations from the models or a deterministic code and a combination of a deterministic code and a Monte Carlo simulation code. Thus, one can estimate k_{eff} from the knowledge of cross sections of all the production channels such as, i) single neutron type – (n,n’), (n,np), (n,nd), (n,nt), (n,nα), (n,nh) and (n,n2p) ii) multiple neutron type – (n, xn) where x = 2, 3, ..., (n, f), (n,2nh), (n,2nd), (n,2nt), (n,2npd), (n,2n2p), (n,3np), (n,3nd), (n,3nh), (n,3nt) and (n,3nα) and iii) neutron removal type – (n,γ), (n, p), (n, d), (n, t) and (n,α). The (n, f) reaction contributes in both production and the removal channels. Considering all the aforesaid reaction channels we have calculated [3] the k_{eff} for the three neutron spectra by using the following formulas and further details of the procedure will be published elsewhere. Let us assume I_0 is the incident neutron intensity falling on a material then the intensity of surviving neutrons after passing through x distance, $I_x = I_0 \exp (-x \Sigma_t)$, here, Σ_t is the total macroscopic cross section of a neutron in the given material, Considering $I_0 = 1$ for a single neutron intensity, then the removal term, R of the neutron by way of all removal processes, (n, γ), (n, p) and (n,2n) etc. may be written as,

$$R = (1-\exp (-x \Sigma_t)) \left[\Sigma(n, \gamma) + \Sigma(n, p) + \Sigma(n, d) + \Sigma(n, nd) + \Sigma(n, nt) \right] / \Sigma_{\text{tot}} \tag{1}$$

and the remaining fraction, 1-R = L may be assumed to leak out from the fuel system. Similarly, a production term, P may be written as follows,

$$P = (1-\exp(x \Sigma_t)) \left[2\Sigma(n, 2n) + 3\Sigma(n, 3n) + 4\Sigma(n, 4n) + 9\Sigma(n, 9n) + <v>\Sigma(n, f) + 2\Sigma(n, 2np) + 3\Sigma(n, 3n\alpha) + ... \right] / \Sigma_{\text{tot}} \tag{2}$$

Here $<v>$ is fission neutrons of a fuel element. In the estimation of P, R and L contribution of the (n, n’) channel is not included because of the obvious reasons. Thus, $k_{\text{eff}} = P / (R+L)$ \tag{3}
The elementary cross sections of different reactions up to 250 MeV neutron energy are calculated using the TALYS-1.0 code and for the energy 250 MeV the values of the cross sections are considered constant at the last value corresponding to 250 MeV. This is a fair approximation because n-flux at $E_n > 250$ MeV is very small.

From the data given in figs 1a) and b) we can infer that for the spallation spectrum k_{eff} is dominant in case of 232Th while it is below the values corresponding to the thermal & fast spectra in case of 235U. This shows that (n,xn) reaction play dominant role in case of fertile Th-fuel because of the presence of high energy neutrons compared to the fissile 235U fuel. This kind of behavior was pointed out earlier in ref. [4] in a detailed study of (n,xn) reactions in fertile and fissile fuels.

We have compared results of our calculations with that estimated by Cullen et al. [5] and a good agreement is seen in the two calculations.

Acknowledgement: We are thankful to the ILTP(DST) for the financial support.

References

